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1 Introduction

The primary focus of my research encompasses topics from nonlinear analysis, the calculus of
variations, and nonlinear integral and partial differential equations (PDEs). Essentially, my projects
involve the analysis of nonlinear elliptic systems, hyperbolic conservations laws, and nonlinear
parabolic systems. These research projects can be classified into three categories:

• non-linear elliptic systems and fully nonlinear systems of integral equations,

• the Keller–Segel model and the incompressible Navier-Stokes equations, and

• hyperbolic conservation laws and their regularization.

The three categories above more or less constitute the research problems I have studied since
my doctoral studies at the University of Colorado and as a faculty member at the University of
Oklahoma (postdoc) and the University of Texas-Rio Grande Valley (tenure-track). In many of
the problems, I explore notions of well-posedness, ill-posedness, and the qualitative properties of
solutions for various PDEs, e.g., I examine the symmetry, monotonicity, regularity and asymptotic
properties of their solutions. In fact, a number of these problems are closely related to some well-
known open questions. However, the actual questions examined are often far more general and the
techniques adopted or developed in their study are at times non-standard. The advantage of this
is two-fold. First, it allows us to re-examine classical problems in new directions, which may lead
to alternative proofs and solutions. Second, it may shed light on overcoming the difficulties faced
when studying such conjectures, some of which are discussed below in greater detail.

In what follows, we introduce and motivate my research projects in more detail by describing
the problems, their methods of study (and subsequently my contributions) and the possible future
directions.

2 Nonlinear elliptic and related problems

The first category of research is on the analysis of nonlinear elliptic systems and related problems
through the development of novel mathematical methods. Namely, I study the quantitative and
qualitative properties of solutions to well-known families of integral equations and their closely
related family of partial differential equations. The motivating examples within this family include
many cases which correspond to fundamental problems in mathematical physics, conformal geom-
etry, singular integral operators, and nonlinear differential equations. As a result, some important
consequences of the research problems considered are closely related to the Hénon–Lane–Emden
conjecture along with a new direction for generalizing the Yamabe and prescribing curvature prob-
lems in the framework of integral operators.
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In order to motivate this project, let us recall some very simple examples which illustrate the
same underlying principles and difficulties encountered in the problems of this research. Partic-
ularly, the prototypical example is the weighted elliptic equation commonly referred to as the
Hénon–Lane–Emden equation:

−∆u = |x|σup, u > 0, x ∈ Rn, (2.1)

where n ≥ 3, p > 1 and σ > −2. This elliptic problem arises as a model for rotating stellar clusters,
and when σ = 0 and p = (n + 2)/(n − 2), the classification of solutions for this problem is also
an important ingredient in the celebrated Yamabe and prescribing scalar curvature problems. For
instance, if M = Sn with the induced metric g0, one may ask if there exists a metric g pointwise
conformal to g0 with constant scalar curvature. It turns out this question is more or less equivalent
to finding a positive solution to the semilinear equation. This problem is also connected with the
critical case of the Sobolev inequality in which compactness of the embedding fails.

In recent decades, another fashionable problem centered on finding optimal criteria for the
existence and non-existence of positive solutions of equation (2.1). For instance, if σ = 0, the
celebrated result of Gidas and Spruck [4, 21] (see also [9, 10, 39]) established the following.

• Equation (2.1) has no solution in the subcritical case 1 < p < pS := n+2
n−2 ;

• it does admit positive solutions in the critical (=) and super-critical (>) cases: p ≥ n+2
n−2 .

Basically, this shows that the exponent p = pS is optimal and provides a complete dichotomy
between the existence and non-existence of solutions. On the other hand, non-existence theorems
for equation (2.1) and related problems, sometimes referred to as Liouville type theorems, are also
important in establishing a priori estimates and singularity and regularity properties of solutions
for a large class of elliptic problems (see [22, 49]). Another important and closely related issue is on
the asymptotic behavior of solutions for equation (2.1) and we shall elucidate its connection with
the Liouville type properties in greater detail shortly. For instance, since p > n+σ

n−2 is a necessary

condition for existence (and thus n − 2 > 2+σ
p−1 ), the authors in [37, 38] determined that all bound

states (i.e., bounded and decaying positive solutions) of equation (2.1) vanish at infinity with either
the slow rate or the fast rate, respectively:

u(x) ' |x|−
2+σ
p−1 or u(x) ' |x|−(n−2).

Here, the notation f(x) ' g(x) means there exist constants c1, c2 > 0 such that c1g(x) ≤ f(x) ≤
c2g(x) as |x| −→ ∞. A natural generalization of the Hénon–Lane–Emden equation is the Hénon–
Lane–Emden system: {

−∆u = |x|σ1vq, x ∈ Rn\{0},
−∆v = |x|σ2up, x ∈ Rn\{0}, (2.2)

where σi > −2 and p, q > 1. Surprisingly, the qualitative properties described earlier for equation
(2.1) become rather difficult to extend to system (2.2). For example, the Hénon–Lane–Emden
conjecture states that the Sobolev hyperbola,

n+ σ1

1 + q
+
n+ σ2

1 + p
= n− 2,

is the critical case analogue for the system. Namely, it states that system (2.2) admits no positive
solution if the subcritical case holds, i.e.,

n+ σ1

1 + q
+
n+ σ2

1 + p
> n− 2.



Even in the unweighted case σi = 0, this is often referred to as the Lane–Emden conjecture and
it too has only partial results. Particularly, it holds true for radial solutions (see [45]) and for low
dimension n ≤ 4 (see [49, 52, 54]). For the weighted case σi 6= 0, similar partial results can be
found in [18, 47, 60].

We extend this study to more general poly-harmonic and integral versions of the Hénon–Lane–
Emden problems. Namely, we shall consider the psuedo-differential system{

(−∆)α/2u = |x|σ1vq, x ∈ Rn\{0},
(−∆)α/2v = |x|σ2up, x ∈ Rn\{0}, (2.3)

and the more general integral system involving the Riesz potentials
u(x) =

∫
Rn

|y|σ1vq(y)

|x− y|n−α
dy,

v(x) =

∫
Rn

|y|σ2up(y)

|x− y|n−α
dy,

(2.4)

where n ≥ 3, p, q > 0, α ∈ (0, n) and σi ∈ (−α,∞). Indeed, the close relationship between these
two systems can be best illustrated by our result in [60]: Let α = 2k be an even integer and
p, q > 1. Then a positive solution u, v ∈ C2k(Rn\{0}) ∩ C(Rn) of system (2.3), multiplied by a
suitable constant if necessary, is a solution of system (2.4); and vice versa.

The motivation for studying the qualitative properties of solutions for the general integral sys-
tems stem from several problems. For example, one problem originates from the Hardy–Littlewood–
Sobolev (HLS) inequality [56] (cf. [34, 40]). Namely, the problem concerns finding the best constant
in the inequality, and this entails maximizing a certain functional under suitable constraints and
thus requires delicate variational techniques. Interestingly, the critical points for this functional are
precisely the positive solutions of system (2.4) when σi = 0 and

1

1 + q
+

1

1 + p
=
n− α
n

.

In other words, this integral system comprises of the Euler–Lagrange equations for the associated
functional. On the other hand, if σ1 = σ2

.
= σ, p = q = n+α−2σ

n−α and u ≡ v, system (2.4) reduces to
the integral equation

u(x) =

∫
Rn

up(y)

|x− y|n−α|y|σ
dy. (2.5)

In the case where α = 2, (2.5) becomes the Euler–Lagrange equation for the classical Hardy–
Sobolev inequality, which is itself a special case of the Caffarelli–Kohn–Nirenberg inequality (cf.
[1, 6, 8, 12]). In view of this, we call systems (2.3) and (2.4) the Hardy–Sobolev type systems
hereafter.

Main problems

This section describes the research problems in this project including partial results and their
methods of study. Although the problems below include challenging open conjectures, we believe
the project will, at the very least, generate more ideas and make significant contributions within
the area or perhaps find applications to other significant problems. In addition, these problems
will extend considerably many classical results for nonlinear elliptic equations and systems (cf.
[3, 7, 17, 20, 33, 44, 45, 48, 51, 52, 53, 55] and the references therein)



Generalized Hénon–Lane–Emden conjecture

The first component extends the results for the scalar problem to the the Hardy–Sobolev type
systems. In particular, we consider a generalized version of the Hénon–Lane–Emden conjecture
and study the decay properties of solutions.

First, let

H(p, q, σi) :=
n+ σ1

1 + q
+
n+ σ2

1 + p
.

Then the Hardy–Sobolev systems are said to be in the subcritical, critical, or super-critical case if
H(p, q, σi) > n− α, H(p, q, σi) = n− α, or H(p, q, σi) < n− α, respectively.

Conjecture 1. (i) System (2.4) has no positive solution if the sub-critical case holds.

(ii) System (2.4) admits a positive solution if either the critical or super-critical case holds.

So far, we have made significant progress on both aspects of Conjecture 1. Specifically, in
addressing part (i) of the conjecture, we proved in [57] the existence of positive solutions for both the
critical and super-critical cases provided that α = 2k and σi ∈ (−2,∞). We did this by developing
an elegant degree theoretic approach for the shooting method along with a careful construction
of a particular continuous “target” map. Indeed, this construction is crucial in circumventing the
issues with the poly-harmonic operators (−∆)k, which do not arise when dealing with, say, system
(2.2). Then, the desired existence result follows from these ideas combined with some Pohozaev
type identities. We have further developed this method and established various existence results
to far general elliptic equations and systems having critical and supercritical growth (see [35, 36]).

In regards to part (ii) of the conjecture, we have resolved the conjecture for bound states, which
also includes the radial solutions. Here, the solution u, v is said to be decaying if u(x) ' |x|−θ1 and
v(x) ' |x|−θ2 for some rates θ1, θ2 > 0. Specifically, the non-existence of bounded and decaying
solutions for (2.4) in the subcritical case was established in [59].

Decaying properties of solutions

The second component of this project concerns the decay properties of solutions for the Hardy–
Sobolev systems and connects it with Conjecture 1. First, let us define the two principle rates of
decay.

Definition. Let u, v be positive solutions of system (2.4). Then u, v are said to decay with the
slow rates as |x| −→ ∞ if u(x) ' |x|−q0 and v(x) ' |x|−p0, where

p0 =
α(p+ 1) + (σ2p+ σ1)

pq − 1
and q0 =

α(q + 1) + (σ1q + σ2)

pq − 1
.

Without loss of generality, suppose q ≥ p and σ1 ≤ σ2. Then u, v are said to decay with the fast
rates as |x| −→ ∞ if

u(x) ' |x|−(n−α) and
v(x) ' |x|−(n−α), if p(n− α)− σ2 > n;

v(x) ' |x|−(n−α) ln |x|, if p(n− α)− σ2 = n;

v(x) ' |x|−(p(n−α)−(α−σ2)), if p(n− α)− σ2 < n.

We have shown in [59] that positive bound states of system (2.4) vanish at infinity with either
the slow rates or fast rates just as in the scalar case. A key ingredient of this result uses the fact
that the bounded and fast decaying solutions can be completely characterized by an integrability



condition. More precisely, the bounded and fast decay solutions are indeed equivalent to the
integrable solutions, i.e., (u, v) ∈ Lr0(Rn) × Ls0(Rn) where r0 = n/q0 and s0 = n/p0. Further, it
was shown that integrable solutions are radially symmetric and decreasing about some point and
thus, Pohozaev type identities in integral form imply that there are no positive integrable solutions
in the subcritical case. Additionally, we also proved that if u, v are not integrable but are bound
states, then they necessarily decay with the slow rates and so, as another consequence of Pohozaev
type identities, there are no bound states in the subcritical case. In view of these results, we
consider the more general statement.

Conjecture 2. Every bounded positive solution of system (2.4) either decays with the slow rates
or the fast rates. In particular, every bounded non-integrable solution necessarily decays with the
slow rates.

In view of the results described earlier, if Conjecture 2 were to hold, then the non-existence of
solutions in the subcritical case will follow thereby providing a resolution of Conjecture 1.

A refined approach of Serrin and Zou and the Lane-Emden conjecture

Let us consider some noteworthy cases of the HLS systems and describe our recent work on obtaining
Liouville theorems to elliptic problems related to a renowned conjecture. First, recall the celebrated
Liouville type theorem for the Lane-Emden equation,

∆u+ up = 0 in Ω ⊆ Rn. (2.6)

Theorem 1. Let n ≥ 3, Ω = Rn and 1 < p < pS. If u is a non-negative solution of equation (2.6),
then necessarily u ≡ 0.

A natural question is if one may extend this result for the corresponding elliptic system called
the Lane Emden system: p, q > 0 and

∆u+ vp = 0, x ∈ Ω,
∆v + uq = 0, x ∈ Ω.

(2.7)

Obtaining an analogous non-existence theorem for the system, however, is rather difficult. It
remains an open problem and is often called the Lane-Emden conjecture. More precisely, the
conjecture infers that system (2.7) has no positive classical solution in Ω = Rn, if and only if the
subcritical condition

1

1 + p
+

1

1 + q
> 1− 2

n

holds. Unlike Theorem 1, in which the method of moving planes provides an elegant and elementary
proof, the usual suspects that worked for equation (2.6) are no longer sufficient to prove the Lane-
Emden conjecture. Similarly, the method of moving planes no longer applies to even slight variants
of equation (2.6) having variable coefficients with suitable growth. So far, the best possible strategy
in proving the Lane-Emden conjecture centers on an approach originated by Serrin and Zou [52];
however, their method has a bottleneck in that it only works in low spatial dimensions. Thus, their
method has been used to prove the Lane-Emden conjecture for dimension n ≤ 4 [54]. Interestingly,
Serrin and Zou’s approach can also be applied to equation (2.6) to prove Theorem 1 but it only
works for n ≤ 4 as well. Motivated by this observation, we have recently improved the method to
effectively remove the restriction on the dimension—at least we have refined the approach to give
an alternative proof of Theorem 1 in all dimensions [61]. In doing so, we are able to identify the



underlying obstructions inherent in Serrin and Zou’s original method, then we demonstrate how to
overcome them. Indeed, the merit of this work is it sheds more light on how to possibly overcome
the major difficulties in the Lane-Emden conjecture.

For completeness, we give a short description of the key ideas in our new proof of Theorem 1.
Roughly speaking, a key ingredient in our proof of the Liouville type theorem relies on the Rellich-
Pohozaev identity: for a non-negative solution u of the Lane-Emden equation in Ω = BR(0), there
holds ( n

p+ 1
− n− 2

2

)∫
BR(0)

up+1 dx

=

∫
∂BR(0)

{
R
up+1

p+ 1
+R−1|x ·Du|2 − R

2
|Du|2 +

n− 2

2
u
∂u

∂ν

}
dS,

where ν = x/|x| is the outward normal unit vector at x ∈ ∂B1(0) and directional derivative
∂u/∂ν = ∇u · ν. The key is to exploit this identity to estimate the energy quantity

F (R) :=

∫
BR(0)

up+1 dx,

since the Rellich-Pohozaev identity implies the estimate

F (R) ≤ C(G1(R) +G2(R)),

where

G1(R) := RN
∫
SN−1

u(R, θ)p+1 dθ,

and

G2(R) := RN
∫
SN−1

(
|Du(R, θ)|2 +R−2u(R, θ)2

)
dθ.

Here we are writing u = u(r, θ) in spherical coordinates with r = |x| and x/|x| ∈ SN−1 (x 6= 0),
and D = Dx is the gradient operator in terms of the spatial variable x. It will suffice to prove
that equation (2.6) has no positive entire solutions. Therefore, if we assume u is indeed a positive
solution, then we shall control the surface integrals above in terms of F (R) to arrive at the feedback
estimate F (R) ≤ C[G1(R) + G2(R)] ≤ CR−aF (R)1−b for some a, b > 0. Hence, after taking a
sequence R = Rj → ∞, we may conclude that ‖u‖Lp+1(RN ) = 0. Thus, u ≡ 0, and we arrive at a
contradiction.

Basically, the advantage of Serrin and Zou’s approach is that we effectively remove one degree
of freedom in the spatial dimension when estimating the energy quantity. As we already mentioned,
the preceding argument has a bottleneck in the sense that a weaker integrability of u is still required
for the procedure to run smoothly. By weaker we mean that u is not assumed to have finite energy
or u ∈ Lp+1(Rn), for example. This is due to certain standard estimates employed, e.g., the Sobolev
and interpolation inequalities, which are sensitive to the dimension and are not strong enough to
get the feedback estimates for larger N . In refining the above argument, we discover that the proof
requires the existence of a number q0 > (n− 1)(p− 1)/2 such that∫

B1(0)
uq0 dx ≤ C(n, p), (2.8)

where C(n, p) > 0 depends only on n and p. Of course, elementary elliptic theory readily guarantees
this integral estimate holds for q0 = p and n ≥ 2, but the condition q0 = p > (n − 1)(p − 1)/2 is
only satisfied if n ≤ 4, and this is precisely where the restriction on n appears. Therefore, we are
able to remove the obstruction on n once we obtain the local integral estimate (2.8).



Future direction: Integral systems of the Wolff type

The weighted integral systems involving Riesz potentials can be extended to include more general
potentials. For example, we can establish analogous qualitative properties for the integral system
containing Hardy weights and Wolff potentials:{

u(x) = c1(x)Wβ,γ(|y|σ1vq)(x),
v(x) = c2(x)Wβ,γ(|y|σ2up)(x).

(2.9)

Here, the Wolff potential of a function f in L1
loc(Rn) is defined by

Wβ,γ(f)(x) =

∫ ∞
0

(∫
Bt(x) f(y) dy

tn−βγ

) 1
γ−1 dt

t
,

where n ≥ 3, p, q > 1, γ > 1, β > 0 with βγ < n, Bt(x) ⊂ Rn denotes the ball of radius t centered
at x, and the coefficients c1(x) and c2(x) are double bounded functions, i.e., there exists a positive
constant C > 0 such that C−1 ≤ ci(x) ≤ C for all x ∈ Rn. When β = α/2 and γ = 2, the Wolff
potential Wβ,γ(·) is equivalent—up to a multiplicative positive constant—to the Riesz potential.
Therefore, system (2.9) includes the Hardy–Sobolev type systems as special cases.

In [58], we established an equivalent characterization of fast decaying ground states similar to
our earlier result for the Hardy–Sobolev type systems. Consequently, we also obtained a char-
acterization of the fast decaying weak solutions for quasilinear systems e.g. systems involving
p-Laplacians. Hence, as indicated by these results, we would like to know whether or not the
other qualitative results for system (2.4) can be extended to system (2.9), and this is one potential
direction of this research. For recent papers closely related to this research plan, see [14, 62].

Future direction: Prescribing integral curvature equations

As suggested in our results for integral systems, we strongly endorse this approach of adopting
integral operators since it has a number of advantages. On the one hand, the ideas and methods
from this approach will undoubtedly generate new directions in approaching classical problems,
which may perhaps lead to new insights and resolutions to some open conjectures, including the
ones stated above. On the other hand, not only will it generalize the aforementioned scalar curvature
equations, it also enables one to make sense of problems beyond those involving local differential
operators. To illustrate this, consider the bubbling function, uε(x) = (ε2+|x|2)/ε, for the biharmonic
operator on R2; however, it does not satisfy (−∆)2u = u−3, u > 0, in R2. Therefore, one can ask
if there is a curvature equation in which uε associates with. Fortunately, uε is indeed a solution,
modulo a positive constant, of the integral equation

u(x) =

∫
Rn

u−3(y)

|x− y|2
dy, u > 0 in R2.

Hence, for α 6= n, a natural question we study is the solvability of the more general problem

u(x) =

∫
M

R(y)up(y)

|x− y|n−α
dVg(y), u > 0 in M, (2.10)

thereby formulating new curvature functions on, say, (M, g) = (Sn, g0) but in terms of integral
operators. Interestingly, for α > n, existence results for (2.10) were established under antipodally
symmetric R(x) (see [65]). The technical ideas developed there involves new variational approaches
combined with a reversed version of the HLS inequality (see [16, 15]) and many interesting questions



arise as a result of these new ideas. For example, we plan to examine the qualitative properties of
solutions for problems closely related to equation (2.10) but for α 6= n and various exponents p. Of
course, we plan to study whether or not the qualitative properties for the scalar equation (2.1) can
translate to this situation as well.

3 Nonlinear parabolic equations

Unlike the previous research topic, my research on nonlinear parabolic systems, in particular the
Keller–Segel model, the Euler equations, and the Navier–Stokes equations, is one area which I have
considered more recently. Within my research group at the University of Colorado and the Uni-
versity of Oklahoma, we have studied several important yet fundamental problems on the Navier–
Stokes equations. This includes papers that study various existence theory for weak and mild
solutions (see [27, 32]) and the study of Louiville type theorems, singularity analysis and local
regularity of axi-symmetric solutions (see [29, 50]). I firmly believe that my knowledge-base from
these monumental works will result in significant collaborations and results in the analysis of these
fluid models.

The two-dimensional Keller–Segel model

First, let us describe our recent work on both the well-posedness and ill-posedness to a well-known
chemotaxis model in two dimensions—the Keller–Segel model of the parabolic-parabolic type,

∂tu−∆u+∇ · (u∇v) = 0 in R+ × R2, (3.1)

∂tv −∆v − u = 0 in R+ × R2, (3.2)

(u, v)|t=0 = (u0, v0) in R2. (3.3)

Here, R+ := (0,∞), (t, x) ∈ R+ × R2, u = u(t, x) and v = v(t, x) are the scalar-valued density
of amoebae and the scalar-valued concentration of chemical attractant, respectively, while (u0, v0)
are the given initial data. The term chemotaxis refers to the attraction and movement of cellular
organisms such as amoebae or bacteria in response to chemical stimulation. The Keller–Segel
model, first introduced by Keller and Segel in [28] (see also [11]), is perhaps the most common
basic model for describing this motion of cell migration through chemical attraction.

When studying such nonlinear physical systems, there are several primary aspects of concern.
One aspect is on the basic property of local or global-in-time well-posedness of the problem. We
may ask if solutions exist in some sense, are they unique, and do they vary continuously upon small
perturbations of the initial data. Another closely related aspect concerns the setting in which the
model is ill-posed. In fact, our main result provides a thorough analytical examination of this model
by identifying the proper functional space setting in terms of the Triebel–Lizorkin spaces in which
the Cauchy problem is ill-posed. More specifically, we examine the dividing number with respect
to r for the well-posedness of solutions with initial data (u0, v0) belonging to the Triebel-Lizorkin
spaces Ḟ−1,r

2 (R2)× Ḟ 0,2
∞ (R2). Remarkably, for the two-dimensional Keller–Segel model, we proved

that the dividing number is r = 2 (see [13]). By the dividing number we mean that well-posedness
holds for r = 2, but the system is ill-posed whenever 2 < r ≤ ∞. As a result of establishing
this relationship between well-posedness and ill-posedness, we find the optimal setting in which the
model remains valid while gaining a deeper understanding of the setting in which the model fails
to capture basic deterministic properties.



Remarks on well-posedness of solutions

First, recall a Cauchy problem is said to be locally well-posed in Z if for every initial data u0 ∈ Z
there exists a time T = T (u0) > 0 such that

(1) a solution of the initial value problem exists in the time interval [0, T ],

(2) is unique in a certain Banach space of functions Y ⊂ C([0, T ];Z),

(3) the solution map from u0 to the solution u is continuous from Z to C([0, T );Z).

Furthermore, if T can be taken arbitrarily large, we say that the Cauchy problem is globally well-
posed, and we say the Cauchy problem is ill-posed if it is not well-posed. By solutions of the Keller–
Segel model, we mean mild solutions to the equivalent system of integral equations as follows:

u = et∆u0 −B(u, v),

v = et∆v0 + L(u),

where

B(u, v) :=

∫ t

0
e(t−τ)∆∇ · (u∇v) dτ and L(u) :=

∫ t

0
e(t−τ)∆u dτ, (3.4)

are the bilinear and linear terms, respectively. Indeed, the equations (3.1)–(3.2) are scale invariant
under the transformations

(u(t, x), v(t, x))→(λ2u(λ2t, λx), v(λ2t, λx)) for all λ > 0.

Thus, the local well-posedness is obtained through a standard fixed point argument on the integral
equations in a suitable function space. One can also further exploit the scaling invariance of the
equations by choosing a proper “critical” function space that preserves the scaling. Therefore, the
global well-posedness of solutions naturally follows under some smallness assumption on the initial
data. This idea of using a functional setting invariant by scaling is now classical and originates
from several works (cf. [23, 26, 27, 30, 31, 41, 64] and the references therein). One example of a
critical space for the Keller–Segel model is Ḟ−1,2

2 (R2)× Ḟ 0,2
∞ (R2). So, in our paper [13], we derived

the linear and bilinear estimates in this critical space and applied the usual fixed point argument
in order to get the local well-posedness result along with the global well-posedness for small initial
data.

Norm Inflation

To show the ill-posedness of system (3.1)–(3.3), we implemented the novel framework of norm-
inflation pioneered by Bourgain and Pavlović [2] in their study of the ill-posedness of the Navier–
Stokes equation in the largest critical space Ḃ−1,∞

∞ ; but in doing so, we have contributed new ideas
in our adoption of their techniques. Let us describe the general idea for showing ill-posedness via
norm inflation, but first,

Our ill-posedness result showed that the third condition (3) of continuity is violated by showing
the onset of norm inflation, namely, we construct a particular class of arbitrarily small initial data
that produce arbitrarily large solutions in arbitrarily short time. Particularly, we demonstrate that
the culprit responsible for generating norm inflation lies in the bilinear term within the model.
Therefore, it is the density u in the Keller–Segel model which exhibits norm inflation. Roughly
speaking, the key steps to showing this norm inflation property is to first decompose the integral



system, especially the bilinear term, into several parts: one part stemming from the bilinear term
responsible for norm inflation and the remaining terms which can be controlled. The a priori
estimates for solutions of the Cauchy problem in Ḟ−1,r=2

2 (R2)×BMO(R2) is an important ingredient
in this step since they are exploited in order to control some of those remaining terms in the
decomposition. The Ḟ−1,r>2

2 (R2)–norm of the solution u in arbitrary short time can then be
bounded from below by the norm inflation term and the controlled terms. Thus, this proves the
solution map for u is discontinuous at the initial time. We refer the reader to [13] for the details.

Future direction: the incompressible Navier–Stokes

We shall consider the modeling and analysis of fluid flows with emphasis on the dynamic stability of
the three-dimensional incompressible Euler and Navier–Stokes equations. This research is closely
related to the famous open question of whether the three-dimensional Navier–Stokes equations
can develop a finite-time singularity from smooth initial data [19]. The understanding of this
fundamental property would enhance our knowledge of fluid dynamic stability and shed light on
the onset of turbulence. To illustrate some key aspects of this research, consider the incompressible
Navier–Stokes equations, {

ut + (u · ∇)u = −∇p+ ν∆u,
∇ · u = 0,

(3.5)

with initial condition u(x, 0) = u0, where u is the velocity, p is the pressure, and ν is the viscosity
constant. The initial condition u0 is assumed to be smooth, divergence–free, and has finite energy.
Let ω = ∇× u be the vorticity. By applying the curl operator to (3.5), one obtains the vorticity
equation:

ωt + (u · ∇)ω = ω · ∇u + ν∆ω, (3.6)

with initial condition ω(x, 0) = ∇ × u0. The first term on the right hand side of (3.6) is called
the vortex stretching term. This term is absent in the two-dimensional case. The vortex stretching
term is responsible for the dynamic generation of small scales. Formally, the vortex stretching
term has a quadratic nonlinearity in vorticity. In some sense, most regularity analysis treats the
nonlinear terms as a small perturbation of the diffusion equation, which works only if the solution
is small in some scaling invariant norm.

Due to the supercritical nature of the nonlinearity of the Navier–Stokes equations, these equa-
tions with large initial data are convection dominated, instead of diffusion dominated. For this
reason, we believe that the understanding of whether the corresponding Euler equations exhibit
finite-time blowup could shed useful light on the global regularity of the Navier-Stokes equations.
Let us consider the Euler equations in the vorticity form. One important observation is that when
we consider the convection term together with the vortex stretching term, the two nonlinear terms
form a commutator or a Lie derivative:

ωt + (u · ∇)ω − (ω · ∇)u = 0. (3.7)

It is reasonable to believe that the commutator would lead to some cancellation among the two
nonlinear terms, and thus weaken the nonlinearity dynamically. This points to the potential impor-
tant role of convection in the Euler equations. Another way to realize the importance of convection
is to use the Lagrangian formulation of the vorticity equation:

ω(X(α, t), t) = Xα(α, t)ω0(α), (3.8)

where X(α, t) is the Lagrangian flow map: Xt = u(X, t), X(α, 0) = α. Due to the incompressibility
of the flow, the flow map is volume preserving, i.e., det(Xα(α, t)) ≡ 1. Thus vorticity can increase



dynamically only through the dynamic deformation of the Lagrangian flow map, but under the
constraint: det(Xα(α, t)) ≡ 1. A formal asymptotic analysis suggests that as vorticity increases,
the local support of maximum vorticity tends to severely deform and flatten. Such deformation
tends to weaken the nonlinearity of vortex stretching dynamically.

Revealing the stabilizing effect of convection via a three-dimensional model

We propose to study the stabilizing effect of convection via a new three-dimensional model. As
we shall see below, this model is derived from a reformulation of the axi-symmetric Navier-Stokes
equations. The only difference between our three-dimensional model and the reformulated Navier–
Stokes equations is that we drop the convection term in the model. If we add the convection term
back to the model, we will recover the full Navier–Stokes equations.

Consider the three-dimensional axi-symmetric Navier-Stokes equations with swirl. Denote by
uθ, ωθ and ψθ the angular velocity, angular vorticity and angular stream function respectively. In
[24], Hou and Li introduced the following change of variables:

u1 = uθ/r, ω1 = ωθ/r, ψ1 = ψθ/r, (3.9)

and derived the following reformulation of the axi-symmetric Navier-Stokes equations that governs
the dynamics of u1, ω1 and ψ1 as follows:

∂tu1 + ur∂ru1 + uz∂zu1 = ν
(
∂2
r + 3

r∂r + ∂2
z

)
u1 + 2u1ψ1z,

∂tω1 + ur∂rω1 + uz∂zω1 = ν
(
∂2
r + 3

r∂r + ∂2
z

)
ω1 +

(
u2

1

)
z
,

−
(
∂2
r + 3

r∂r + ∂2
z

)
ψ1 = ω1,

(3.10)

where ur = −rψ1z, uz = 2ψ1 + rψ1r. The 1D model:

(u1)t + 2ψ1(u1)z = ν(u1)zz − 2v1u1, (3.11)

(v1)t + 2ψ1(v1)z = ν(v1)zz + (u1)2 − (v1)2 + c(t), (3.12)

is derived by setting r = 0 and neglecting the r-derivatives from (3.10). The equation (3.12) for v1

was derived by integrating the w1-equation with respect to z. As observed by Liu and Wang [43],
if u is a smooth velocity field, then uθ, ωθ and ψθ must satisfy: uθ

∣∣
r=0

= ωθ
∣∣
r=0

= ψθ
∣∣
r=0

= 0.

Thus u1, ψ1 and ω1 are well defined. We note that u1 ≈ (uθ)r near r = 0, which characterizes the
radial vorticity.

The dynamic stability demonstrated through this 1D model strongly suggests that convection
plays an essential role in stabilizing the vortex stretching term. To further investigate the stabilizing
effect of convection for the Navier–Stokes equations, we propose the following three-dimensional
model. This model is derived by simply dropping the convective term from the reformulated
Navier–Stokes equations (3.10):

∂tu1 = ν
(
∂2
r + 3

r∂r + ∂2
z

)
u1 + 2u1ψ1z,

∂tω1 = ν
(
∂2
r + 3

r∂r + ∂2
z

)
ω1 + (u2

1)z,

−
(
∂2
r + 3

r∂r + ∂2
z

)
ψ1 = ω1.

(3.13)

Note that (3.13) is already a closed system. The main difference between this new three-dimensional
model and the original Navier–Stokes equations is that we neglect the convection term in our model.



If we add the convection term back to our three-dimensional model, we will recover the Navier–
Stokes equations.

To see how convection depletes the mechanism for generating a potential finite-time singularity
of our model, we add the convection term back to the model. We use the solution of the viscous
model at a time sufficiently close to the potential singularity time as the initial condition for the
full 3d Navier–Stokes equations. Surprisingly, the numerical studies show that the solution of the
3d Navier–Stokes equations immediately becomes less focused and smoother along the symmetry
axis. As time increases, the solution develops a thin jet that moves away from the symmetry
axis. As we know from the Caffarelli-Kohn-Nirenberg partial regularity theory [5] (see also [42] for
a simplified proof), the three-dimensional axisymmetric Navier–Stokes equations cannot develop
finite-time singularities away from the symmetry axis. The fact that the convection term forces
the most singular part of the solution to move away from the symmetry axis shows that convection
has effectively destroyed the mechanism that leads to a potential finite-time blowup observed in
the model. One significant application of this stabilizing effect of convection may prove useful in
gaining a deeper understanding of the global regularity of the Navier–Stokes equations. Hence, the
main goal of this research is to rigorously prove these analytical properties such as the finite-time
blowup of solutions and convection stabilizing effect of these models. However, this is only one
possible direction in a number of paths we may take in studying incompressible flows.

4 Hyperbolic conservation laws

My research on nonlinear hyperbolic problems focused on inviscid regularization methods for con-
servation laws with the equations of gas dynamics in mind. Instead of applying classical viscous
or dispersive perturbations, a spatial-averaging is applied to the nonlinear terms of the PDEs.
This notion of averaging directly stems from the successful regularization of the inviscid Burgers
equation via averaging of the convective velocity [25, 46],

ut + uux = 0
u = gα ∗ u

gα(x) = 1
2αe
−|x|/α.

(4.1)

An important application of such a method lies in its potential in alleviating the major difficulties
faced in the numerical simulation of compressible fluid flows. However, to be a valid regularization
method, the global well-posedness and stability/convergence of the regularized solutions should be
verified. Recently, we have examined a generalization of this regularization to symmetric hyperbolic
system of N equations in n-space variables

ut +

n∑
i

Ai(x, t, u)uxi = h(x, t, u) in UT = Rn × (0, T ), (4.2)

where the Ai’s are symmetric N ×N matrices while h, u are N -vector-valued functions. We always
prescribe an initial condition to this system

u(x, 0) = u0(x). (4.3)

In our manuscript [63], we introduced spatial averaging to the coefficient matrices in (4.2) to prevent
the finite-time blowup of solutions, thus obtaining global well-posedness of smooth solutions to this
modified IVP. More precisely, we filter (4.2) into the following system:{

ut +
∑n

i Ai(x, t, u)uxi = h(x, t, u) in Rn × (0, T ),
u(x, 0) = u0(x),

(4.4)



where A is the convolution product of the entries of A with respect to the x-variables with some
specifically chosen kernel g. One example is the Helmholtz filter which was used in (4.1). We
then proved the global-in-time existence and uniqueness of classical solutions of this averaged IVP
via standard Sobolev energy estimates. Moreover, we showed that this regularization captures the
behavior of the solutions to the 1D Cauchy problem for systems of conservation laws. In particular,
we proved via a BV compactness argument, that the regularized solutions will converge, as the
level of filtering vanishes, to a weak solution to the original, non-averaged system. Moreover, under
more stringent conditions on the filter and initial data, this limiting weak solution is actually the
unique entropy admissible solution.
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Differential Equations, 252:2544–2562, 2012.
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